Ligand source activities (1 row/activity)





Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
AssayType

Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

1499 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
3779 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
536 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
CHEMBL434 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
DB01064 2091 47 None -63 38 Human 8.3 pEC50 = 8.3 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
ChEMBL 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C nan
53375056 142569 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3891080 142569 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422432 143271 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3896824 143271 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422430 143943 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3902340 143943 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
57422428 147330 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3929225 147330 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 10.1021/acs.jmedchem.0c00388
57422442 151758 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3964777 151758 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
57422443 151816 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3965292 151816 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422440 153490 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3979660 153490 0 None - 1 Human 7.0 pIC50 = 7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
57944959 144969 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3910649 144969 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422472 145150 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3912134 145150 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57945017 146344 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC 10.1021/acs.jmedchem.0c00388
CHEMBL3921262 146344 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC 10.1021/acs.jmedchem.0c00388
57422420 173308 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 325 5 2 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)NCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4526144 173308 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 325 5 2 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)NCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422491 173498 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 351 5 0 5 3.0 Cc1noc(C)c1Cn1cc(N2CCN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4530528 173498 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 351 5 0 5 3.0 Cc1noc(C)c1Cn1cc(N2CCN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155567505 175991 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4588973 175991 0 None - 1 Human 6.0 pIC50 = 6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2O)cn1 10.1021/acs.jmedchem.0c00388
57945009 145740 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3916540 145740 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 10.1021/acs.jmedchem.0c00388
155565412 175563 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4579065 175563 0 None - 1 Human 6.0 pIC50 = 6.0 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
57422275 147163 0 None - 1 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3927851 147163 0 None - 1 Human 5.8 pIC50 = 5.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422287 145118 0 None - 1 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 10.1021/acs.jmedchem.0c00388
CHEMBL3911861 145118 0 None - 1 Human 4.8 pIC50 = 4.8 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 10.1021/acs.jmedchem.0c00388
57945020 144724 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3908801 144724 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
12429 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
57422431 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
CHEMBL3924866 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 10.1021/acs.jmedchem.0c00388
53374961 147842 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3933031 147842 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53373641 151346 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3961116 151346 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53375053 160080 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4108527 160080 0 None - 1 Human 7.7 pIC50 = 7.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422411 143513 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3898835 143513 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422267 145847 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3917282 145847 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 10.1021/acs.jmedchem.0c00388
57944953 147710 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3932026 147710 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422494 172853 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 8 1.5 Cc1cc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n(C)n1 10.1021/acs.jmedchem.0c00388
CHEMBL4514970 172853 0 None - 1 Human 6.7 pIC50 = 6.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 383 5 0 8 1.5 Cc1cc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n(C)n1 10.1021/acs.jmedchem.0c00388
57422429 147941 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3933783 147941 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155516501 170095 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 311 4 2 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)Nc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4443466 170095 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 311 4 2 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)Nc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57944981 172049 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)C(=O)N(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4471870 172049 0 None - 1 Human 5.7 pIC50 = 5.7 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 379 5 0 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)C(=O)N(Cc3ccccc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57944963 145039 0 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3911209 145039 0 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 10.1021/acs.jmedchem.0c00388
3760997 170412 1 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 357 6 1 7 3.3 CCSc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4448191 170412 1 None - 1 Human 5.6 pIC50 = 5.6 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 357 6 1 7 3.3 CCSc1ncccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 10.1021/acs.jmedchem.0c00388
57944902 143873 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3901756 143873 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422268 149345 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3945185 149345 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
57422454 150050 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3950626 150050 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155522505 170717 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 335 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]ccc3c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4452065 170717 0 None - 1 Human 6.5 pIC50 = 6.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 335 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]ccc3c2)cn1 10.1021/acs.jmedchem.0c00388
57422301 152574 0 None - 1 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3971823 152574 0 None - 1 Human 5.5 pIC50 = 5.5 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 10.1021/acs.jmedchem.0c00388
53375054 145610 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3915586 145610 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57422433 149742 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3948082 149742 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
53374960 152355 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3970005 152355 0 None - 1 Human 7.4 pIC50 = 7.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 10.1021/acs.jmedchem.0c00388
57944907 142663 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3891877 142663 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 10.1021/acs.jmedchem.0c00388
57944900 146040 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3918801 146040 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57944914 148827 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
CHEMBL3941028 148827 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O 10.1021/acs.jmedchem.0c00388
155533921 171879 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(O)c2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4469393 171879 0 None - 1 Human 6.4 pIC50 = 6.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(O)c2)cn1 10.1021/acs.jmedchem.0c00388
155528571 171344 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 332 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4461460 171344 0 None - 1 Human 5.4 pIC50 = 5.4 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 332 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57450323 144007 0 None - 1 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3902844 144007 0 None - 1 Human 5.3 pIC50 = 5.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 10.1021/acs.jmedchem.0c00388
57422441 143638 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3899833 143638 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 10.1021/acs.jmedchem.0c00388
155544814 175030 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(O)cc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL4567380 175030 0 None - 1 Human 6.3 pIC50 = 6.3 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 312 4 2 6 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(O)cc2)cn1 10.1021/acs.jmedchem.0c00388
12430 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
53374958 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
CHEMBL3907822 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 10.1021/acs.jmedchem.0c00388
57945012 143626 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 10.1021/acs.jmedchem.0c00388
CHEMBL3899757 143626 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 10.1021/acs.jmedchem.0c00388
25206166 148685 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL3939850 148685 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
155518895 170332 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 10.1021/acs.jmedchem.0c00388
CHEMBL4447100 170332 0 None - 1 Human 6.2 pIC50 = 6.2 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 10.1021/acs.jmedchem.0c00388
57944991 142525 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3890731 142525 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
57422266 144668 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3908324 144668 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 10.1021/acs.jmedchem.0c00388
155524757 171005 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cncc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
CHEMBL4456506 171005 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 327 5 1 7 2.2 COc1cncc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 10.1021/acs.jmedchem.0c00388
57422424 147469 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3930312 147469 0 None - 1 Human 6.1 pIC50 = 6.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 10.1021/acs.jmedchem.0c00388
57422413 145041 0 None - 1 Human 5.1 pIC50 = 5.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
CHEMBL3911225 145041 0 None - 1 Human 5.1 pIC50 = 5.1 Functional
Antagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assayAntagonist activity at recombinant human TAS2R8 stably expressed in cells co-expressing Galpha16gust44 assessed as inhibition of andrographolide-induced intracellular calcium level measured for 100 secs by fluo-4 dye based FLIPR assay
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 10.1021/acs.jmedchem.0c00388
1499 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
3779 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
536 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
CHEMBL434 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
DB01064 2091 47 None -63 38 Human 8.1 pEC50 = 8.1 Functional
Agonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assayAgonist activity at human TAS2R8 expressed in HEK293T cells co-expressing Galpha15 assessed as increase in intracellular calcium level by Calcium-3 dye based fluorescence assay
Drug Central 211 4 4 4 1.1 CC(NCC(c1ccc(c(c1)O)O)O)C None
5318517 416 0 None -8 3 Human 4.0 pEC50 = 4.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 350 3 3 5 2.0 OC[C@]1(C)[C@H](O)CC[C@@]2([C@@H]1CCC(=C)[C@H]2C/C=C/1\[C@H](O)COC1=O)C 32330040
9675 416 0 None -8 3 Human 4.0 pEC50 = 4.0 Functional
UnclassifiedUnclassified
Guide to Pharmacology 350 3 3 5 2.0 OC[C@]1(C)[C@H](O)CC[C@@]2([C@@H]1CCC(=C)[C@H]2C/C=C/1\[C@H](O)COC1=O)C 32330040
11027 2920 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
5281544 2920 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
CHEMBL1911053 2920 0 None - 1 Human 4.2 pEC50 = 4.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 540 9 6 13 -0.6 OC[C@H]1O[C@@H](O[C@@H]2OC=C([C@H](/C/2=C\C)CC(=O)OCCc2ccc(c(c2)O)O)C(=O)OC)[C@@H]([C@H]([C@@H]1O)O)O 34785711
12430 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
53374958 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
CHEMBL3907822 3454 3 None - 1 Human 7.2 pIC50 = 7.2 Functional
UnclassifiedUnclassified
Guide to Pharmacology 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C 32330040
12429 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040
57422431 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040
CHEMBL3924866 3453 5 None 1548 2 Human 7.7 pIC50 = 7.7 Functional
UnclassifiedUnclassified
Guide to Pharmacology 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O 32330040




Ligands (move mouse cursor over ligand name to see structure) Receptor Assay information Chemical information
Sel. page Similar-
ity
Common
name
GPCRdb
ID
#Vendors

Reference
ligand
Fold
selectivity
# Tested
GPCRs
Species

p-value
(-log)
Activity
Type
Activity
Relation
Activity
Value
Assay
Type
Assay
Description
Source

Mol
weight
Rot
Bonds
H don

H acc

LogP

Smiles

DOI

53374959 143507 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(O)cc(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3898803 143507 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(O)cc(O)c3)C(C)(C)C2=O)cn1 nan
53373636 146700 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3923956 146700 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3ccccc3)C2=O)cn1 nan
53373639 148633 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)c(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3939399 148633 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)c(O)c3)C(C)(C)C2=O)cn1 nan
57944945 150002 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 6 0 9 1.6 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCc3ccc(F)cc3)c2=O)cn1 nan
CHEMBL3950223 150002 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 6 0 9 1.6 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCc3ccc(F)cc3)c2=O)cn1 nan
57944929 153131 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(F)cc3)C2=O)cn1 nan
CHEMBL3976506 153131 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(F)cc3)C2=O)cn1 nan
53373844 160609 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL4112934 160609 0 None - 0 Human 8.0 pIC50 = 8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3ccccc3)C2=O)cn1 nan
57944947 142815 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc(Cl)c3c(c2)OCCO3)cn1 nan
CHEMBL3892982 142815 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc(Cl)c3c(c2)OCCO3)cn1 nan
53375154 142986 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3894430 142986 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53374077 143465 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3c(F)cccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3898431 143465 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3c(F)cccc3F)C(C)(C)C2=O)cn1 nan
57422439 145388 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3913870 145388 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422434 146674 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 1 8 2.2 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1O nan
CHEMBL3923778 146674 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 1 8 2.2 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1O nan
53373847 147000 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3O)C(C)(C)C2=O)cn1 nan
CHEMBL3926477 147000 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3O)C(C)(C)C2=O)cn1 nan
57944964 151451 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Cl)OCCO3)cn1 nan
CHEMBL3961992 151451 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 388 4 1 7 3.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Cl)OCCO3)cn1 nan
57422442 151758 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3964777 151758 0 None - 0 Human 7.0 pIC50 = 7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422307 144084 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 2 6 3.0 Cc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2[nH]1 nan
CHEMBL3903394 144084 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 2 6 3.0 Cc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2[nH]1 nan
57422447 146070 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C#N)c3)C2=O)cn1 nan
CHEMBL3919109 146070 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C#N)c3)C2=O)cn1 nan
57422476 146345 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 331 5 1 6 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(C)C)C2=O)cn1 nan
CHEMBL3921270 146345 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 331 5 1 6 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(C)C)C2=O)cn1 nan
57944923 153985 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 0 9 1.9 COc1ccnc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1OC nan
CHEMBL3983912 153985 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 426 7 0 9 1.9 COc1ccnc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1OC nan
57945009 145740 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 nan
CHEMBL3916540 145740 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccnc2)cn1 nan
57422322 150102 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 5 2 5 3.0 Cc1noc(C)c1Cn1cc(NC(=S)NCc2ccccc2)cn1 nan
CHEMBL3951005 150102 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 5 2 5 3.0 Cc1noc(C)c1Cn1cc(NC(=S)NCc2ccccc2)cn1 nan
53373961 148911 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(CO)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3941755 148911 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(CO)c3)C(C)(C)C2=O)cn1 nan
53373744 150977 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3958274 150977 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
53374186 153400 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3978855 153400 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3F)C(C)(C)C2=O)cn1 nan
57462265 159951 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@H](Cc3ccccc3)C2=O)cn1 nan
CHEMBL4107363 159951 0 None - 0 Human 7.0 pIC50 = 7.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@H](Cc3ccccc3)C2=O)cn1 nan
57422477 152836 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 4 1 6 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C(C)C)C2=O)cn1 nan
CHEMBL3974057 152836 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 4 1 6 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C(C)C)C2=O)cn1 nan
57422413 145041 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 nan
CHEMBL3911225 145041 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 308 3 0 5 2.7 Cc1noc(C)c1Cn1cc(N2Cc3ccccc3C2=O)cn1 nan
57944941 150569 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
CHEMBL3955012 150569 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
57422423 153821 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 1 9 0.6 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3982487 153821 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 1 9 0.6 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(Cc3ccccc3)c2=O)cn1 nan
57422281 153446 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccccc1CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3979312 153446 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccccc1CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57462264 143533 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@@H](Cc3ccccc3)C2=O)cn1 nan
CHEMBL3898921 143533 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)N[C@@H](Cc3ccccc3)C2=O)cn1 nan
53374187 145271 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3912916 145271 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373640 146351 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3921288 146351 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
53374078 148813 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)c(O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3940913 148813 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 2 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)c(O)c3)C(C)(C)C2=O)cn1 nan
53373848 151751 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3964698 151751 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
57944908 149942 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 0 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CN(C)C)c3)C2=O)cn1 nan
CHEMBL3949748 149942 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 0 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CN(C)C)c3)C2=O)cn1 nan
118696129 150634 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 5 3.3 Cc1noc(C)c1Cn1cnc(NC(=O)c2ccc3c(c2)CCC3)c1 nan
CHEMBL3955448 150634 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 5 3.3 Cc1noc(C)c1Cn1cnc(NC(=O)c2ccc3c(c2)CCC3)c1 nan
53374575 147149 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
CHEMBL3927750 147149 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
3326313 143678 1 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 9 2.2 COC(=O)c1sccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3900125 143678 1 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 9 2.2 COC(=O)c1sccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944970 145482 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 492 11 0 9 4.8 COc1cccc(CN(Cc2cccc(OC)c2OC)c2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3914559 145482 0 None - 0 Human 4.9 pIC50 = 4.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 492 11 0 9 4.8 COc1cccc(CN(Cc2cccc(OC)c2OC)c2cnn(Cc3c(C)noc3C)c2)c1OC nan
57944922 151146 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 6 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc4ccccc34)C2=O)cn1 nan
CHEMBL3959519 151146 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 6 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc4ccccc34)C2=O)cn1 nan
53375056 142569 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 nan
CHEMBL3891080 142569 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 2 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C(C)(CO)C2=O)cn1 nan
53373849 143898 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 0 8 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
CHEMBL3901905 143898 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 0 8 3.3 COc1ccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
53373745 146004 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3918518 146004 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57944926 146490 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3F)C2=O)cn1 nan
CHEMBL3922377 146490 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3F)C2=O)cn1 nan
57422473 146973 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.2 COc1cccc(CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3926266 146973 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.2 COc1cccc(CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422468 149495 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 2 7 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)NCc3ccccc3)C2=O)cn1 nan
CHEMBL3946372 149495 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 7 2 7 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)NCc3ccccc3)C2=O)cn1 nan
57944965 149908 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OC(F)(F)O3)cn1 nan
CHEMBL3949370 149908 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 376 4 1 7 3.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OC(F)(F)O3)cn1 nan
57422462 154008 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 1 6 1.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C)C2=O)cn1 nan
CHEMBL3984079 154008 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 1 6 1.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(C)C2=O)cn1 nan
57944901 142937 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cc[nH]c2)cn1 nan
CHEMBL3894018 142937 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cc[nH]c2)cn1 nan
57422316 143612 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2C#N)cn1 nan
CHEMBL3899608 143612 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2C#N)cn1 nan
57944940 143721 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccccc1CCN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3900543 143721 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccccc1CCN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422430 143943 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3902340 143943 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 6 1 7 1.9 CNC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422489 146816 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3924802 146816 0 None - 0 Human 6.9 pIC50 = 6.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3)C2=O)cn1 nan
57944959 144969 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 nan
CHEMBL3910649 144969 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 359 5 0 7 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCO3)C2=O)cn1 nan
57422306 153357 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 6 3.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3occc3c2)cn1 nan
CHEMBL3978470 153357 0 None - 0 Human 5.9 pIC50 = 5.9 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 1 6 3.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3occc3c2)cn1 nan
57944912 149557 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)C(Cc3ccccc3)N(C)C2=O)cn1 nan
CHEMBL3946741 149557 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)C(Cc3ccccc3)N(C)C2=O)cn1 nan
53373740 150130 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(C(C)c3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3951285 150130 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(C(C)c3ccccc3)C(C)(C)C2=O)cn1 nan
53374075 152300 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3969518 152300 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cccc(F)c3)C(C)(C)C2=O)cn1 nan
57422414 153347 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 3 1 7 1.5 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c3ccccc3c2=O)cn1 nan
CHEMBL3978413 153347 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 3 1 7 1.5 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c3ccccc3c2=O)cn1 nan
53374770 150269 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 461 5 0 6 4.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(F)(F)F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3952550 150269 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 461 5 0 6 4.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(F)(F)F)c3)C(C)(C)C2=O)cn1 nan
57944980 150638 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(F)cc2)cn1 nan
CHEMBL3955459 150638 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 5 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc(F)cc2)cn1 nan
53374576 147640 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1cccc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3931441 147640 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1cccc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57944968 146959 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1cccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3926104 146959 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1cccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
53373741 147044 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(C)n(C)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3926891 147044 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(C)n(C)n3)C(C)(C)C2=O)cn1 nan
57422317 152498 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 345 4 2 5 3.5 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2F)cn1 nan
CHEMBL3971272 152498 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 345 4 2 5 3.5 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2F)cn1 nan
57944973 150559 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 392 7 1 8 2.4 COc1ccc(OC)c(S(=O)(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3954896 150559 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 392 7 1 8 2.4 COc1ccc(OC)c(S(=O)(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422416 150703 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 5 3.4 Cc1noc(C)c1Cn1cc(N2CCCN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3956013 150703 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 5 3.4 Cc1noc(C)c1Cn1cc(N2CCCN(Cc3ccccc3)C2=O)cn1 nan
57422466 148062 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 1 6 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCCc3ccccc3)C2=O)cn1 nan
CHEMBL3934773 148062 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 1 6 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCCc3ccccc3)C2=O)cn1 nan
57422268 149345 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3945185 149345 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(OC)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422469 144009 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 452 8 2 8 1.7 COc1cccc(CNC(=O)CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3902853 144009 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 452 8 2 8 1.7 COc1cccc(CNC(=O)CC2NC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57422424 147469 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 nan
CHEMBL3930312 147469 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 275 3 1 6 0.6 Cc1noc(C)c1Cn1cc(N2C(=O)CNC2=O)cn1 nan
57422305 150534 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3nccnc23)cn1 nan
CHEMBL3954644 150534 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3nccnc23)cn1 nan
57422411 143513 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 nan
CHEMBL3898835 143513 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 3 0 6 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)c3ccccc3C2=O)cn1 nan
53375152 149380 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)ccc1F nan
CHEMBL3945434 149380 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)ccc1F nan
57422463 153688 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3981376 153688 0 None - 0 Human 6.8 pIC50 = 6.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 6 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccccc3)C2=O)cn1 nan
57422429 147941 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 nan
CHEMBL3933783 147941 0 None - 0 Human 5.8 pIC50 = 5.8 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 6 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C(=O)O)c3)C2=O)cn1 nan
57422287 145118 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 nan
CHEMBL3911861 145118 0 None - 0 Human 4.7 pIC50 = 4.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 7 1.8 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n(C)n1 nan
57944967 150404 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3953709 150404 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422458 152846 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
CHEMBL3974121 152846 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
57422458 152846 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
CHEMBL3974121 152846 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 5 1 8 1.6 COc1cccc(C(=O)Nc2nnn(Cc3c(C)noc3C)n2)c1 nan
53374771 147668 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c(C)c1 nan
CHEMBL3931725 147668 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 0 6 3.9 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c(C)c1 nan
53374188 142469 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)nc1 nan
CHEMBL3890303 142469 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)nc1 nan
53374873 147061 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccncc3)C(C)(C)C2=O)cn1 nan
CHEMBL3927031 147061 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccncc3)C(C)(C)C2=O)cn1 nan
57944961 152967 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 290 6 1 5 2.9 CCC(C)CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3975179 152967 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 290 6 1 5 2.9 CCC(C)CC(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944976 151607 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 311 4 1 6 2.5 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 nan
CHEMBL3963530 151607 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 311 4 1 6 2.5 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)n1 nan
57422455 142464 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3N)C2=O)cn1 nan
CHEMBL3890262 142464 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3N)C2=O)cn1 nan
53375055 143930 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 8 2.8 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1O nan
CHEMBL3902192 143930 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 8 2.8 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1O nan
53374961 147842 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3933031 147842 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
57422482 148167 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 0 9 1.2 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3935648 148167 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 380 5 0 9 1.2 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(Cc3ccccc3)c2=O)cn1 nan
53375057 148589 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 0 8 3.1 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1OC nan
CHEMBL3939063 148589 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 7 0 8 3.1 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)cc1OC nan
57944904 148662 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 COCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3939695 148662 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 COCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
53373638 149953 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1cc(O)cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3949830 149953 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1cc(O)cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373641 151346 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 nan
CHEMBL3961116 151346 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 1 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CC3)C2=O)cn1 nan
53374870 151668 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
CHEMBL3964034 151668 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
57944930 153432 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)C(C)N(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3979194 153432 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)C(C)N(Cc3ccccc3)C2=O)cn1 nan
53375053 160080 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL4108527 160080 0 None - 0 Human 7.7 pIC50 = 7.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 5 1 7 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@@H](C)N(Cc3cccc(O)c3)C2=O)cn1 nan
3170441 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
CHEMBL3092287 103904 2 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 8 1 4 3.8 COc1ccc(CN(Cc2ccccc2)S(=O)(=O)c2ccc(C(=O)O)cc2)cc1 nan
57422267 145847 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 nan
CHEMBL3917282 145847 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCO3)cn1 nan
53374378 146553 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(OC)c(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3922801 146553 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(OC)c(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57422446 146848 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 6 0 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C=O)c3)C2=O)cn1 nan
CHEMBL3925139 146848 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 6 0 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(C=O)c3)C2=O)cn1 nan
57422448 147175 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3927927 147175 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944950 148610 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(Cl)c3)C2=O)cn1 nan
CHEMBL3939226 148610 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(Cl)c3)C2=O)cn1 nan
53374189 150035 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3950520 150035 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3F)C(C)(C)C2=O)cn1 nan
57422444 150529 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 433 5 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C(F)(F)F)C2=O)cn1 nan
CHEMBL3954622 150529 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 433 5 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C(F)(F)F)C2=O)cn1 nan
57944982 150878 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 321 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(C#N)c2)cn1 nan
CHEMBL3957404 150878 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 321 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(C#N)c2)cn1 nan
53374577 146059 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 480 9 0 8 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCN(C)C)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3919010 146059 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 480 9 0 8 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCN(C)C)c3)C(C)(C)C2=O)cn1 nan
4341332 147302 1 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 414 5 1 8 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2scc(S(C)(=O)=O)c2Cl)cn1 nan
CHEMBL3928980 147302 1 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 414 5 1 8 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2scc(S(C)(=O)=O)c2Cl)cn1 nan
57945010 153937 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 6 1 6 3.0 COC(C)(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3983490 153937 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 6 1 6 3.0 COC(C)(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422304 154323 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 1 6 3.8 Cc1cc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
CHEMBL3986724 154323 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 4 1 6 3.8 Cc1cc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
57422294 152430 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3970721 152430 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
57944955 143010 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 346 5 1 6 2.6 Cc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3894702 143010 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 346 5 1 6 2.6 Cc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57945021 144197 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 3.2 CCOc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3904300 144197 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 3.2 CCOc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53374190 144251 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3904739 144251 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53373962 148569 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccnc3)C(C)(C)C2=O)cn1 nan
CHEMBL3938926 148569 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccnc3)C(C)(C)C2=O)cn1 nan
57422465 153491 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3979675 153491 0 None - 0 Human 6.7 pIC50 = 6.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 6 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CCc3ccccc3)C2=O)cn1 nan
57422303 144134 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1C nan
CHEMBL3903830 144134 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1C nan
57422291 145318 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 302 4 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)C2CCCCC2)cn1 nan
CHEMBL3913309 145318 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 302 4 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)C2CCCCC2)cn1 nan
57422302 153296 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 358 5 3 8 2.2 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(O)c1O nan
CHEMBL3977925 153296 0 None - 0 Human 5.7 pIC50 = 5.7 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 358 5 3 8 2.2 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(O)c1O nan
57422325 146694 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 5 1 7 2.6 Cc1noc(C)c1Cn1cc(C(=O)NCc2cccs2)sc1=O nan
CHEMBL3923914 146694 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 349 5 1 7 2.6 Cc1noc(C)c1Cn1cc(C(=O)NCc2cccs2)sc1=O nan
53373958 146798 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n(C)n1 nan
CHEMBL3924674 146798 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 8 2.3 Cc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n(C)n1 nan
53374281 147106 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3927388 147106 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 6 0 8 3.1 COC(=O)c1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422488 147391 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 0 8 1.9 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n1 nan
CHEMBL3929698 147391 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 0 8 1.9 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)n1 nan
53374379 153384 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 6 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3978725 153384 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 6 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccccc3)C(C)(C)C2=O)cn1 nan
53374773 149423 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C(=O)O)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3945807 149423 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C(=O)O)cc3)C(C)(C)C2=O)cn1 nan
57422323 151330 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2C#N)cn1 nan
CHEMBL3961023 151330 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2C#N)cn1 nan
53374282 146690 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(F)ccc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3923880 146690 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cc(F)ccc3F)C(C)(C)C2=O)cn1 nan
53374380 152025 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccccc1CCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3967072 152025 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1ccccc1CCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422324 149411 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 327 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2)cn1 nan
CHEMBL3945727 149411 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 327 4 2 5 3.3 Cc1noc(C)c1Cn1cc(NC(=S)Nc2ccccc2)cn1 nan
53374381 142731 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1cccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3892375 142731 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.3 COc1cccc(CCN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57944977 146090 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3Cl)C2=O)cn1 nan
CHEMBL3919276 146090 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 413 6 0 6 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccccc3Cl)C2=O)cn1 nan
57422269 153845 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)C2(c3ccccc3)CC2)cn1 nan
CHEMBL3982707 153845 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)C2(c3ccccc3)CC2)cn1 nan
57945012 143626 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
CHEMBL3899757 143626 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
57944978 144224 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 8 0 8 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
CHEMBL3904522 144224 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 8 0 8 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
53374283 148169 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccn3)C(C)(C)C2=O)cn1 nan
CHEMBL3935659 148169 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 5 0 7 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccn3)C(C)(C)C2=O)cn1 nan
57422497 148533 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCCc3ccccc3)C2=O)cn1 nan
CHEMBL3938586 148533 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 7 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCCc3ccccc3)C2=O)cn1 nan
57422301 152574 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 nan
CHEMBL3971823 152574 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 1 7 2.9 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3ocnc3c2)cn1 nan
57422318 144777 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 2 6 3.4 COc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3909170 144777 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 2 6 3.4 COc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
57422275 147163 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 nan
CHEMBL3927851 147163 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 296 4 1 5 2.8 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccc2)cn1 nan
57945005 142769 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 470 8 0 6 4.4 Cc1noc(C)c1Cn1cc(N2CN(Cc3ccccc3)CN(CCc3ccccc3)C2=O)cn1 nan
CHEMBL3892633 142769 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 470 8 0 6 4.4 Cc1noc(C)c1Cn1cc(N2CN(Cc3ccccc3)CN(CCc3ccccc3)C2=O)cn1 nan
53374382 151551 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 5 0 8 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc4c(c3)OCCO4)C(C)(C)C2=O)cn1 nan
CHEMBL3963093 151551 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 451 5 0 8 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc4c(c3)OCCO4)C(C)(C)C2=O)cn1 nan
57944902 143873 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 nan
CHEMBL3901756 143873 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 0 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CC3CCCCC3)C2=O)cn1 nan
57944994 148294 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cc(OC)cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3936756 148294 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cc(OC)cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53374284 149843 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCO)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3948947 149843 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCCO)c3)C(C)(C)C2=O)cn1 nan
53374869 150713 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3956109 150713 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 7 3.4 COCc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422270 152186 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)CC(C)c2ccccc2)cn1 nan
CHEMBL3968408 152186 0 None - 0 Human 6.6 pIC50 = 6.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)CC(C)c2ccccc2)cn1 nan
57422294 152430 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3970721 152430 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)C(C)c2ccccc2)cn1 nan
57422315 153365 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)[C@@H](C)c2ccccc2)cn1 nan
CHEMBL3978559 153365 0 None - 0 Human 5.6 pIC50 = 5.6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 0 5 3.3 Cc1noc(C)c1Cn1cc(N(C)C(=O)[C@@H](C)c2ccccc2)cn1 nan
53374775 144621 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCC(=O)O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3907992 144621 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 8 1 8 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(OCC(=O)O)c3)C(C)(C)C2=O)cn1 nan
57422300 148978 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1O nan
CHEMBL3942213 148978 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1O nan
57422319 153827 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccnc2)cn1 nan
CHEMBL3982560 153827 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 328 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccnc2)cn1 nan
57422437 145053 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 0 7 3.2 CSc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3911337 145053 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 0 7 3.2 CSc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
59524401 145128 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 7 0 7 3.2 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)c1 nan
CHEMBL3911969 145128 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 7 0 7 3.2 COCc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C23CC3)c1 nan
53374871 148161 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)C3Cc4cc(O)ccc4CN3C2=O)cn1 nan
CHEMBL3935598 148161 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)C3Cc4cc(O)ccc4CN3C2=O)cn1 nan
53374960 152355 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 nan
CHEMBL3970005 152355 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 5 1 7 3.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCC3)C2=O)cn1 nan
53374872 160636 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
CHEMBL4113151 160636 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 3 1 7 2.1 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H]3Cc4ccc(O)cc4CN3C2=O)cn1 nan
12429 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57422431 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
CHEMBL3924866 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.HTS assay: To determine the effectiveness of an individual antagonist, taste tests were performed with a T2R8 specific agonist, the compound of interest and a reference bitter blocker. We have previously described a good hT2R8 antagonist that was proven to have taste effect. It was shown to reduce bitterness of coffee by itself and in combination with a Broad spectrum bitter blocker.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57944916 143134 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 8 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cc(C)n(C)n3)C2=O)cn1 nan
CHEMBL3895754 143134 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 8 1.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cc(C)n(C)n3)C2=O)cn1 nan
57944931 145116 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCO3)cn1 nan
CHEMBL3911857 145116 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 4 1 7 2.5 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCO3)cn1 nan
25206165 147561 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3930844 147561 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
57422454 150050 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 nan
CHEMBL3950626 150050 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)c3)C2=O)cn1 nan
57944992 150339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 432 4 1 7 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Br)OCCO3)cn1 nan
CHEMBL3953071 150339 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 432 4 1 7 3.3 Cc1noc(C)c1Cn1cc(NC(=O)c2cc3c(cc2Br)OCCO3)cn1 nan
53375151 152729 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc(OC)c1 nan
CHEMBL3973161 152729 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc(OC)c1 nan
53374471 152838 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1OC nan
CHEMBL3974063 152838 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1OC nan
57422499 153143 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 305 4 2 7 -0.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CO)C2=O)cn1 nan
CHEMBL3976649 153143 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 305 4 2 7 -0.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CO)C2=O)cn1 nan
57422320 153141 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 4 2 5 3.7 Cc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3976607 153141 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 341 4 2 5 3.7 Cc1ccccc1NC(=S)Nc1cnn(Cc2c(C)noc2C)c1 nan
57422422 146379 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 1 9 0.8 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(CCc3ccccc3)c2=O)cn1 nan
CHEMBL3921539 146379 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 1 9 0.8 Cc1noc(C)c1Cn1cc(-n2c(=O)[nH]c(=O)n(CCc3ccccc3)c2=O)cn1 nan
57422288 149974 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 6 3.0 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c(C)o1 nan
CHEMBL3949977 149974 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 314 4 1 6 3.0 Cc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c(C)o1 nan
57422483 149407 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCOc3ccccc3)c2=O)cn1 nan
CHEMBL3945679 149407 0 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 7 0 10 1.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(CCOc3ccccc3)c2=O)cn1 nan
53374285 146349 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cccc(F)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3921282 146349 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1cccc(F)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53374472 149870 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3F)C(C)(C)C2=O)cn1 nan
CHEMBL3949113 149870 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(F)c3F)C(C)(C)C2=O)cn1 nan
57944924 150923 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCC3)C2=O)cn1 nan
CHEMBL3957721 150923 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 357 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCC3)C2=O)cn1 nan
57422299 153518 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1O nan
CHEMBL3979892 153518 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1O nan
57422289 147964 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)o1 nan
CHEMBL3933979 147964 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)o1 nan
53374286 147029 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 5 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3926724 147029 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 393 5 0 6 3.3 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3)C(C)(C)C2=O)cn1 nan
25206165 147561 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
CHEMBL3930844 147561 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)C(C)c2ccccc2)cn1 nan
53374377 143925 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3902167 143925 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 6 0 6 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
57422474 147027 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 2 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3926716 147027 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 2 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)cc3)C2=O)cn1 nan
53374473 150924 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1F nan
CHEMBL3957733 150924 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 441 6 0 7 3.4 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1F nan
57944928 149732 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 4 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)N/C(=C\c3ccccc3)C2=O)cn1 nan
CHEMBL3948003 149732 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 363 4 1 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)N/C(=C\c3ccccc3)C2=O)cn1 nan
57422285 152809 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 1 6 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cccn2C)cn1 nan
CHEMBL3973789 152809 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 1 6 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2cccn2C)cn1 nan
57422283 152638 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 COC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3972329 152638 0 None - 0 Human 5.5 pIC50 = 5.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 COC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
12429 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
57422431 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
CHEMBL3924866 3453 5 None - 0 Human 7.5 pIC50 = 7.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 CC1=NOC(C)=C1CN2C=C(C=N2)N3C(=O)CN(CC4=CC=CC(O)=C4)C3=O nan
53374079 151335 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 7 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCOc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3961048 151335 0 None - 0 Human 6.5 pIC50 = 6.5 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 7 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCOc3ccccc3)C(C)(C)C2=O)cn1 nan
53374772 149572 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(CO)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3946823 149572 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(CO)cc3)C(C)(C)C2=O)cn1 nan
57944938 160605 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@H](C)c2ccccc2)cn1 nan
CHEMBL4112920 160605 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@H](C)c2ccccc2)cn1 nan
57945014 153540 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 5 1 5 3.9 Cc1noc(C)c1Cn1cc(NC(=O)CC2C3CC4CC(C3)CC2C4)cn1 nan
CHEMBL3980031 153540 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 5 1 5 3.9 Cc1noc(C)c1Cn1cc(NC(=O)CC2C3CC4CC(C3)CC2C4)cn1 nan
57945016 151248 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 6 1 7 2.3 COc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3960207 151248 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 362 6 1 7 2.3 COc1ccccc1S(=O)(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57945020 144724 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3908801 144724 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1ccccc1C(=O)Nc1cnn(Cc2c(C)noc2C)c1 nan
57944989 148240 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 372 6 2 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
CHEMBL3936248 148240 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 372 6 2 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
25206166 148685 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3939850 148685 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
53375155 142749 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3892490 142749 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
57944913 143268 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3896760 143268 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 7 0 7 2.6 COc1ccc(CCN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
53375054 145610 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3915586 145610 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 6 2 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](CO)N(Cc3cccc(O)c3)C2=O)cn1 nan
57944914 148827 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3941028 148827 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 0 8 2.1 Cc1noc(C)c1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
57422495 149781 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 6 0 9 1.7 CCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3948447 149781 0 None - 0 Human 7.4 pIC50 = 7.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 394 6 0 9 1.7 CCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944907 142663 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 nan
CHEMBL3891877 142663 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3c(c2)OCCO3)cn1 nan
57944906 142993 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 6 0 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[S+](C)[O-])C2=O)cn1 nan
CHEMBL3894555 142993 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 427 6 0 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[S+](C)[O-])C2=O)cn1 nan
57422457 143520 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 369 5 0 8 1.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccn(C)n3)C2=O)cn1 nan
CHEMBL3898870 143520 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 369 5 0 8 1.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccn(C)n3)C2=O)cn1 nan
53374474 147448 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 443 6 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cc(F)cc(F)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3930146 147448 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 443 6 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCc3cc(F)cc(F)c3)C(C)(C)C2=O)cn1 nan
25206166 148685 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3939850 148685 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 326 5 1 6 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57944946 144221 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@@H](C)c2ccccc2)cn1 nan
CHEMBL3904507 144221 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 5 1 5 3.3 Cc1noc(C)c1Cn1cc(NC(=O)[C@@H](C)c2ccccc2)cn1 nan
57944999 147765 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3932517 147765 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 1 7 2.3 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3ccc(O)cc3)C2=O)cn1 nan
57944920 151500 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 8 0 9 2.5 CCCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3962515 151500 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 422 8 0 9 2.5 CCCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944910 147143 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccco2)cn1 nan
CHEMBL3927722 147143 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccco2)cn1 nan
53374475 148948 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 0 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccn(C)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3941993 148948 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 0 8 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccn(C)n3)C(C)(C)C2=O)cn1 nan
87266941 150068 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 8 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3OC=O)C(C)(C)C2=O)cn1 nan
CHEMBL3950742 150068 0 None - 0 Human 5.4 pIC50 = 5.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 7 0 8 2.8 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3OC=O)C(C)(C)C2=O)cn1 nan
53374673 145406 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 5 1 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)n3)C(C)(C)C2=O)cn1 nan
CHEMBL3914005 145406 0 None - 0 Human 6.4 pIC50 = 6.4 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 5 1 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)n3)C(C)(C)C2=O)cn1 nan
57450323 144007 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 nan
CHEMBL3902844 144007 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccncc2)cn1 nan
57422265 144012 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 7 2 8 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
CHEMBL3902860 144012 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 7 2 8 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1O nan
53374476 151648 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(=O)O)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3963907 151648 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C(=O)O)c3)C(C)(C)C2=O)cn1 nan
57422298 149669 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
CHEMBL3947524 149669 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 2 7 2.4 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
57422274 149404 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
CHEMBL3945644 149404 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)ccc1O nan
57944900 146040 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 nan
CHEMBL3918801 146040 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 324 6 1 5 3.1 Cc1noc(C)c1Cn1cc(NC(=O)CCc2ccccc2)cn1 nan
12430 3454 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
53374958 3454 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
CHEMBL3907822 3454 3 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 CC1=NOC(=C1CN2N=CC(=C2)N3C(N(C(C3=O)(C)C)CC4=CC(=CC=C4)O)=O)C nan
53375155 142749 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3892490 142749 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(C#N)cc3)C(C)(C)C2=O)cn1 nan
57422452 144678 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(F)cc3)C2=O)cn1 nan
CHEMBL3908407 144678 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(F)cc3)C2=O)cn1 nan
57422453 153481 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(C#N)cc3)C2=O)cn1 nan
CHEMBL3979603 153481 0 None - 0 Human 7.3 pIC50 = 7.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(C#N)cc3)C2=O)cn1 nan
57422441 143638 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 nan
CHEMBL3899833 143638 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 390 5 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3C#N)C2=O)cn1 nan
57944932 152485 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 CCC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3971132 152485 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 6 1 5 3.7 CCC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422297 160131 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL4108961 160131 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422475 149868 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 3 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)c(O)c3)C2=O)cn1 nan
CHEMBL3949101 149868 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 5 3 8 1.6 Cc1noc(C)c1Cn1cc(N2C(=O)NC(Cc3ccc(O)c(O)c3)C2=O)cn1 nan
57945006 149471 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 6 1 5 4.3 Cc1noc(C)c1Cn1cc(NC(=O)C(c2ccccc2)c2ccccc2)cn1 nan
CHEMBL3946184 149471 0 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 386 6 1 5 4.3 Cc1noc(C)c1Cn1cc(NC(=O)C(c2ccccc2)c2ccccc2)cn1 nan
3688271 152952 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 387 6 2 7 3.4 COc1ccc(OC)c(NC(=S)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3975082 152952 1 None - 0 Human 5.3 pIC50 = 5.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 387 6 2 7 3.4 COc1ccc(OC)c(NC(=S)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422266 144668 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 nan
CHEMBL3908324 144668 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 5 1 5 2.7 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccccc2)cn1 nan
53374674 146114 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3F)C(C)(C)C2=O)cn1 nan
CHEMBL3919495 146114 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 429 5 0 6 3.6 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3F)C(C)(C)C2=O)cn1 nan
57945007 148879 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)C(C)(C)c2ccccc2)cn1 nan
CHEMBL3941536 148879 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 5 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)C(C)(C)c2ccccc2)cn1 nan
53374572 150702 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 481 8 0 9 2.8 COC(=O)COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3956008 150702 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 481 8 0 9 2.8 COC(=O)COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
53374675 147228 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 0 7 3.6 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
CHEMBL3928400 147228 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 437 6 0 7 3.6 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1C nan
57945017 146344 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
CHEMBL3921262 146344 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1ccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1OC nan
53374573 152031 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 347 5 1 7 1.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCO)C(C)(C)C2=O)cn1 nan
CHEMBL3967116 152031 0 None - 0 Human 6.3 pIC50 = 6.3 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 347 5 1 7 1.1 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCO)C(C)(C)C2=O)cn1 nan
57944963 145039 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 nan
CHEMBL3911209 145039 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 297 4 1 6 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2ccccn2)cn1 nan
57944985 145267 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 4 1 5 3.1 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3912902 145267 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 310 4 1 5 3.1 Cc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422271 151606 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc[nH]2)cn1 nan
CHEMBL3963524 151606 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 285 4 2 5 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc[nH]2)cn1 nan
57422470 147095 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 0 6 0.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(C)C2=O)cn1 nan
CHEMBL3927302 147095 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 289 3 0 6 0.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(C)C2=O)cn1 nan
53374676 148814 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 7 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCCc3ccccc3)C(C)(C)C2=O)cn1 nan
CHEMBL3940950 148814 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 421 7 0 6 3.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(CCCc3ccccc3)C(C)(C)C2=O)cn1 nan
57422418 154303 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2CNCN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3986643 154303 0 None - 0 Human 5.2 pIC50 = 5.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 1 6 2.5 Cc1noc(C)c1Cn1cc(N2CNCN(Cc3ccccc3)C2=O)cn1 nan
53373742 143581 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 361 6 0 7 1.7 COCCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3899299 143581 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 361 6 0 7 1.7 COCCN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422449 143752 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(F)c3)C2=O)cn1 nan
CHEMBL3900806 143752 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(F)c3)C2=O)cn1 nan
57422426 146099 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCOc3ccccc3)C2=O)cn1 nan
CHEMBL3919358 146099 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 0 7 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCOc3ccccc3)C2=O)cn1 nan
57944971 146961 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 8 0 10 1.3 COCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3926125 146961 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 8 0 10 1.3 COCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57944949 147711 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(F)c3)C2=O)cn1 nan
CHEMBL3932036 147711 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 397 6 0 6 2.7 Cc1noc(C)c1Cn1cc(N2C(=O)CN(CCc3cccc(F)c3)C2=O)cn1 nan
57422451 147814 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3932834 147814 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 379 5 0 6 2.8 Cc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
57422433 149742 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 nan
CHEMBL3948082 149742 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc(O)cc3)C2=O)cn1 nan
57944911 150410 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 7 0 9 2.1 CCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
CHEMBL3953765 150410 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 7 0 9 2.1 CCCn1c(=O)n(-c2cnn(Cc3c(C)noc3C)c2)c(=O)n1Cc1ccccc1 nan
57422456 150690 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 0 8 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
CHEMBL3955923 150690 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 7 0 8 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1OC nan
57422440 153490 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
CHEMBL3979660 153490 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccccc1CN1CC(=O)N(c2cnn(Cc3c(C)noc3C)c2)C1=O nan
53374962 153692 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1O nan
CHEMBL3981387 153692 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 6 1 8 3.0 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1O nan
57944954 142865 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCCO3)cn1 nan
CHEMBL3893359 142865 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 7 2.6 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc3c2OCCO3)cn1 nan
57422314 144559 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 2 7 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]nnc3c2)cn1 nan
CHEMBL3907422 144559 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 337 4 2 7 2.1 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]nnc3c2)cn1 nan
57422485 146744 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 304 3 0 9 -0.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(C)c2=O)cn1 nan
CHEMBL3924285 146744 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 304 3 0 9 -0.3 Cc1noc(C)c1Cn1cc(-n2c(=O)n(C)n(C)c2=O)cn1 nan
57422312 153301 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]cnc3c2)cn1 nan
CHEMBL3977982 153301 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 336 4 2 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3[nH]cnc3c2)cn1 nan
57945019 142470 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3890306 142470 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 356 6 1 7 2.8 COc1cccc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
53375156 150538 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C(C)C)N(Cc3cccc(O)c3)C2=O)cn1 nan
CHEMBL3954679 150538 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 1 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)[C@H](C(C)C)N(Cc3cccc(O)c3)C2=O)cn1 nan
57422472 145150 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 nan
CHEMBL3912134 145150 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 366 5 0 7 1.9 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccn3)C2=O)cn1 nan
53375052 142868 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 5 1 7 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCCC3)C2=O)cn1 nan
CHEMBL3893402 142868 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 435 5 1 7 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(O)c3)C3(CCCC3)C2=O)cn1 nan
57422432 143271 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 nan
CHEMBL3896824 143271 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 381 5 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3O)C2=O)cn1 nan
53373963 143291 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3O)C(C)(C)C2=O)cn1 nan
CHEMBL3897007 143291 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccccc3O)C(C)(C)C2=O)cn1 nan
57422427 143366 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3897715 143366 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
53373845 146381 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3921566 146381 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 1 7 3.0 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(O)cc3)C(C)(C)C2=O)cn1 nan
57422435 146416 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3921846 146416 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 439 9 0 8 2.5 COCCOc1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944936 151114 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 0 8 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc4c(c3)OCO4)C2=O)cn1 nan
CHEMBL3959229 151114 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 409 5 0 8 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccc4c(c3)OCO4)C2=O)cn1 nan
57422450 152023 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
CHEMBL3967038 152023 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 6 0 7 2.5 COc1ccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)cc1 nan
57422445 153913 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 6 0 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[N+](=O)[O-])C2=O)cn1 nan
CHEMBL3983263 153913 0 None - 0 Human 7.2 pIC50 = 7.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 410 6 0 8 2.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3[N+](=O)[O-])C2=O)cn1 nan
57422326 142517 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCO2 nan
CHEMBL3890651 142517 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 5 1 8 2.5 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCO2 nan
57422273 142968 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)/C=C/c2ccccc2)cn1 nan
CHEMBL3894331 142968 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 322 5 1 5 3.2 Cc1noc(C)c1Cn1cc(NC(=O)/C=C/c2ccccc2)cn1 nan
57422311 143260 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 4 1 7 3.2 Cc1nc2ccc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)cc2o1 nan
CHEMBL3896707 143260 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 351 4 1 7 3.2 Cc1nc2ccc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)cc2o1 nan
57422330 146063 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc2c(cc1C(=O)Nc1cnn(Cc3c(C)noc3C)c1)OCCO2 nan
CHEMBL3919038 146063 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc2c(cc1C(=O)Nc1cnn(Cc3c(C)noc3C)c1)OCCO2 nan
57422328 149151 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCCO2 nan
CHEMBL3943473 149151 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.6 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OCCO2 nan
57422329 153090 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.9 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OC(C)O2 nan
CHEMBL3976167 153090 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 384 5 1 8 2.9 COc1cc(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc2c1OC(C)O2 nan
57944953 147710 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3932026 147710 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
53374677 149939 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 9 0 8 3.3 COCCOc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3949716 149939 0 None - 0 Human 6.2 pIC50 = 6.2 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 467 9 0 8 3.3 COCCOc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
57422487 145579 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 8 1.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)n3)C2=O)cn1 nan
CHEMBL3915301 145579 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 396 6 1 8 1.4 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CO)n3)C2=O)cn1 nan
57422276 146425 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 374 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(S(C)(=O)=O)c2)cn1 nan
CHEMBL3921888 146425 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 374 5 1 7 2.2 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(S(C)(=O)=O)c2)cn1 nan
57422284 154254 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 2 5 2.4 Cc1c[nH]c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3986303 154254 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 299 4 2 5 2.4 Cc1c[nH]c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422272 146485 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 316 5 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)CC2CCCCC2)cn1 nan
CHEMBL3922360 146485 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 316 5 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)CC2CCCCC2)cn1 nan
53374574 144896 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
CHEMBL3910086 144896 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 407 5 0 6 3.6 Cc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1 nan
57422467 152085 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 2 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)Nc3ccccc3)C2=O)cn1 nan
CHEMBL3967574 152085 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 408 6 2 7 2.0 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC(=O)Nc3ccccc3)C2=O)cn1 nan
57944898 151053 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(COCc3ccccc3)C2=O)cn1 nan
CHEMBL3958764 151053 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 395 7 1 7 2.2 Cc1noc(C)c1Cn1cc(N2C(=O)NC(COCc3ccccc3)C2=O)cn1 nan
57422321 149646 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccc(C#N)c2)cn1 nan
CHEMBL3947337 149646 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 352 4 2 6 3.2 Cc1noc(C)c1Cn1cc(NC(=S)Nc2cccc(C#N)c2)cn1 nan
57422286 154108 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccoc2C)cn1 nan
CHEMBL3985065 154108 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 4 1 6 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccoc2C)cn1 nan
53373846 146840 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n1 nan
CHEMBL3925053 146840 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 424 6 0 8 2.7 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)n1 nan
53374080 147619 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
CHEMBL3931283 147619 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 453 7 0 8 3.3 COc1ccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)cc1OC nan
53373960 147806 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
CHEMBL3932779 147806 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1 nan
59524420 148127 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 6 3.8 [C-]#[N+]c1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3935390 148127 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 6 3.8 [C-]#[N+]c1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
53373959 151058 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
CHEMBL3958788 151058 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 411 5 0 6 3.4 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3ccc(F)cc3)C(C)(C)C2=O)cn1 nan
53373743 151753 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3964716 151753 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 7 3.3 COc1ccccc1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422443 151816 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 nan
CHEMBL3965292 151816 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 383 5 0 6 2.6 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3F)C2=O)cn1 nan
53375153 154139 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 5 0 8 2.9 Cc1noc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
CHEMBL3985403 154139 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 412 5 0 8 2.9 Cc1noc(C)c1CN1C(=O)N(c2cnn(Cc3c(C)noc3C)c2)C(=O)C1(C)C nan
57422309 142987 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 7 3.5 CCc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
CHEMBL3894433 142987 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 1 7 3.5 CCc1nc2cc(C(=O)Nc3cnn(Cc4c(C)noc4C)c3)ccc2o1 nan
57422278 143577 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
CHEMBL3899263 143577 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1OC nan
57422471 144165 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 3 0 6 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(C)C(C)(C)C2=O)cn1 nan
CHEMBL3904024 144165 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 317 3 0 6 1.7 Cc1noc(C)c1Cn1cc(N2C(=O)N(C)C(C)(C)C2=O)cn1 nan
57422310 151894 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3nccnc3c2)cn1 nan
CHEMBL3965845 151894 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 348 4 1 7 2.7 Cc1noc(C)c1Cn1cc(NC(=O)c2ccc3nccnc3c2)cn1 nan
57422486 154109 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 456 7 0 9 2.7 Cc1noc(C)c1Cn1cc(-n2c(=O)n(Cc3ccccc3)n(Cc3ccccc3)c2=O)cn1 nan
CHEMBL3985068 154109 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 456 7 0 9 2.7 Cc1noc(C)c1Cn1cc(-n2c(=O)n(Cc3ccccc3)n(Cc3ccccc3)c2=O)cn1 nan
53374678 148875 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 0 6 3.7 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1F nan
CHEMBL3941508 148875 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 425 5 0 6 3.7 Cc1cccc(CN2C(=O)N(c3cnn(Cc4c(C)noc4C)c3)C(=O)C2(C)C)c1F nan
57422295 143173 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 0 5 3.2 Cc1noc(C)c1Cn1cc(N(C)C(=O)C2(c3ccccc3)CC2)cn1 nan
CHEMBL3896073 143173 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 0 5 3.2 Cc1noc(C)c1Cn1cc(N(C)C(=O)C2(c3ccccc3)CC2)cn1 nan
57944991 142525 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 nan
CHEMBL3890731 142525 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 338 7 1 5 3.5 Cc1noc(C)c1Cn1cc(NC(=O)CCCc2ccccc2)cn1 nan
3845786 149562 1 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 6 1 7 2.8 CC(=O)OC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3946779 149562 1 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 368 6 1 7 2.8 CC(=O)OC(C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57945004 153941 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 1 6 2.5 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2F)cn1 nan
CHEMBL3983515 153941 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 350 5 1 6 2.5 Cc1noc(C)c1Cn1cc(NS(=O)(=O)c2ccccc2F)cn1 nan
57422296 150727 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
CHEMBL3956215 150727 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.9 CO[C@H](C(=O)Nc1cnn(Cc2c(C)noc2C)c1)c1ccccc1 nan
57422290 144069 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccoc2)cn1 nan
CHEMBL3903256 144069 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 300 5 1 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)Cc2ccoc2)cn1 nan
57422292 147005 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3926546 147005 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
57422292 147005 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
CHEMBL3926546 147005 0 None - 0 Human 5.1 pIC50 = 5.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 206 3 1 5 1.6 CNc1cnn(Cc2c(C)noc2C)c1 nan
57945002 147618 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)C23CC4CC(CC(C4)C2)C3)cn1 nan
CHEMBL3931276 147618 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 354 4 1 5 3.7 Cc1noc(C)c1Cn1cc(NC(=O)C23CC4CC(CC(C4)C2)C3)cn1 nan
53374185 144150 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C#N)c3)C(C)(C)C2=O)cn1 nan
CHEMBL3903912 144150 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 418 5 0 7 3.2 Cc1noc(C)c1Cn1cc(N2C(=O)N(Cc3cccc(C#N)c3)C(C)(C)C2=O)cn1 nan
57422428 147330 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
CHEMBL3929225 147330 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 423 6 0 8 2.3 COC(=O)c1cccc(CN2CC(=O)N(c3cnn(Cc4c(C)noc4C)c3)C2=O)c1 nan
57944953 147710 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
CHEMBL3932026 147710 0 None - 0 Human 7.1 pIC50 = 7.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 365 5 0 6 2.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3ccccc3)C2=O)cn1 nan
57422498 149652 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 494 7 1 8 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CNC(=O)OC(C)(C)C)c3)C2=O)cn1 nan
CHEMBL3947381 149652 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 494 7 1 8 3.5 Cc1noc(C)c1Cn1cc(N2C(=O)CN(Cc3cccc(CNC(=O)OC(C)(C)C)c3)C2=O)cn1 nan
57422308 153253 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 330 4 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(Cl)c2)cn1 nan
CHEMBL3977534 153253 0 None - 0 Human 6.1 pIC50 = 6.1 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 330 4 1 5 3.4 Cc1noc(C)c1Cn1cc(NC(=O)c2cccc(Cl)c2)cn1 nan
57944966 143614 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cccc(C(=O)Nc2cn(Cc3c(C)noc3C)nc2C)c1 nan
CHEMBL3899624 143614 0 None - 0 Human 5.0 pIC50 = 5.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 5 1 6 3.1 COc1cccc(C(=O)Nc2cn(Cc3c(C)noc3C)nc2C)c1 nan
57422282 147020 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 2 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)C(CO)c2ccccc2)cn1 nan
CHEMBL3926634 147020 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 2 6 2.3 Cc1noc(C)c1Cn1cc(NC(=O)C(CO)c2ccccc2)cn1 nan
57422279 147093 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1 nan
CHEMBL3927291 147093 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 370 7 1 7 2.7 COc1cc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc(OC)c1 nan
57944935 150429 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 1 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCCC3)C2=O)cn1 nan
CHEMBL3953908 150429 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 371 5 1 6 2.9 Cc1noc(C)c1Cn1cc(N2C(=O)NC(CC3CCCCC3)C2=O)cn1 nan
57422277 153851 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1ccc(O)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
CHEMBL3982791 153851 0 None - 0 Human 6.0 pIC50 = 6.0 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 342 5 2 7 2.5 COc1ccc(O)c(C(=O)Nc2cnn(Cc3c(C)noc3C)c2)c1 nan
57422280 143749 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan
CHEMBL3900772 143749 0 None - 0 Human 6.0 pIC50 = 6 Binding
Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.Fluorescence Polarization Assays: In another embodiment, Fluorescence Polarization ("FP") based assays may be used to detect and monitor ligand binding. Fluorescence polarization is a versatile laboratory technique for measuring equilibrium binding, nucleic acid hybridization, and enzymatic activity. Fluorescence polarization assays are homogeneous in that they do not require a separation step such as centrifugation, filtration, chromatography, precipitation, or electrophoresis. These assays are done in real time, directly in solution and do not require an immobilized phase. Polarization values can be measured repeatedly and after the addition of reagents since measuring the polarization is rapid and does not destroy the sample. Generally, this technique can be used to measure polarization values of fluorophores from low picomolar to micromolar levels.
ChEMBL 340 6 1 6 2.7 COc1ccc(CC(=O)Nc2cnn(Cc3c(C)noc3C)c2)cc1 nan